

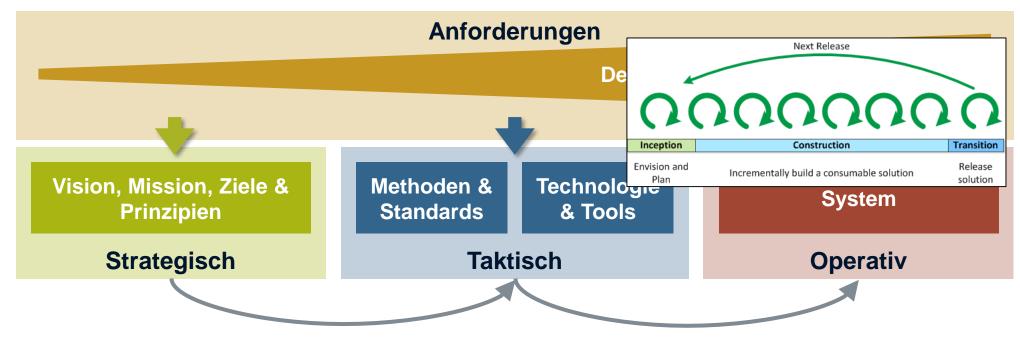
Anforderungserhebung und Releaseplanung (D1)

Raphael Branger

Zürich, 1. Juli 2019

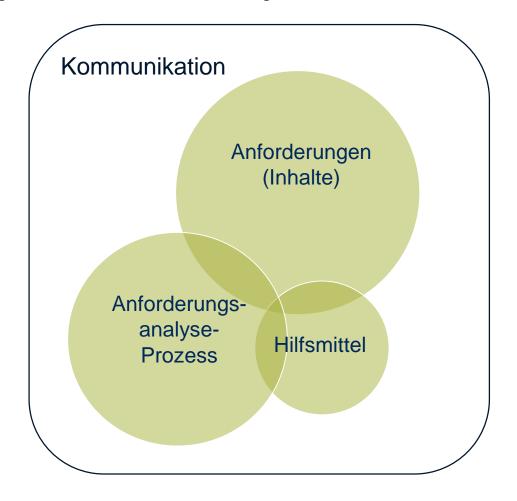
Agenda

- Grundlagen
 - Von der Strategie zur konkreten Lösung
 - NoEstimates und T-Shirt-Grössen
- Varianten zur Gewinnung von Erfahrungswerten
- Vom Scope Breakdown zur Releaseplanung


Grundlagen – Von der Strategie zur konkreten Lösung.

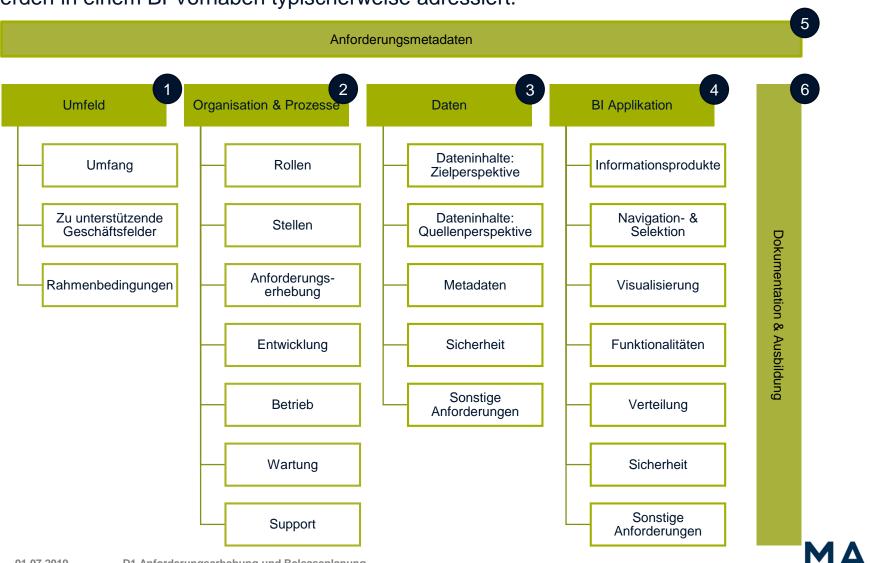
Anforderungen End-to-End

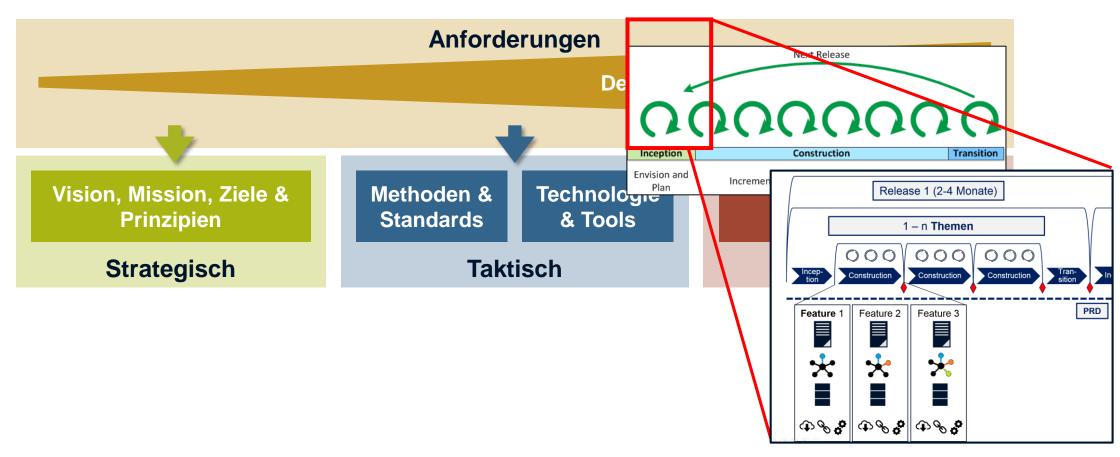
Anforderungen entstehen nicht erst bei der Umsetzung des Systems, sondern erstrecken sich von der Strategie über die Taktik bis zur Umsetzung und den Betrieb. Der Detailgrad nimmt dabei laufend zu.


- Hierbei bilden die Anforderungen der höheren Ebene immer die Grundlagen der nächst detaillierteren Ebene und geben klare Leitplanken. Der Detaillierungsgrad wächst.
- So können konsistente Grundlagen geschaffen werden die gewährleisten, dass das System nachhaltig wachsen kann. Und: Jedes DWH/BI System wächst.

IBIREF

IBIREF = IT-Logix Business Intelligence Requirements Engineering Framework.

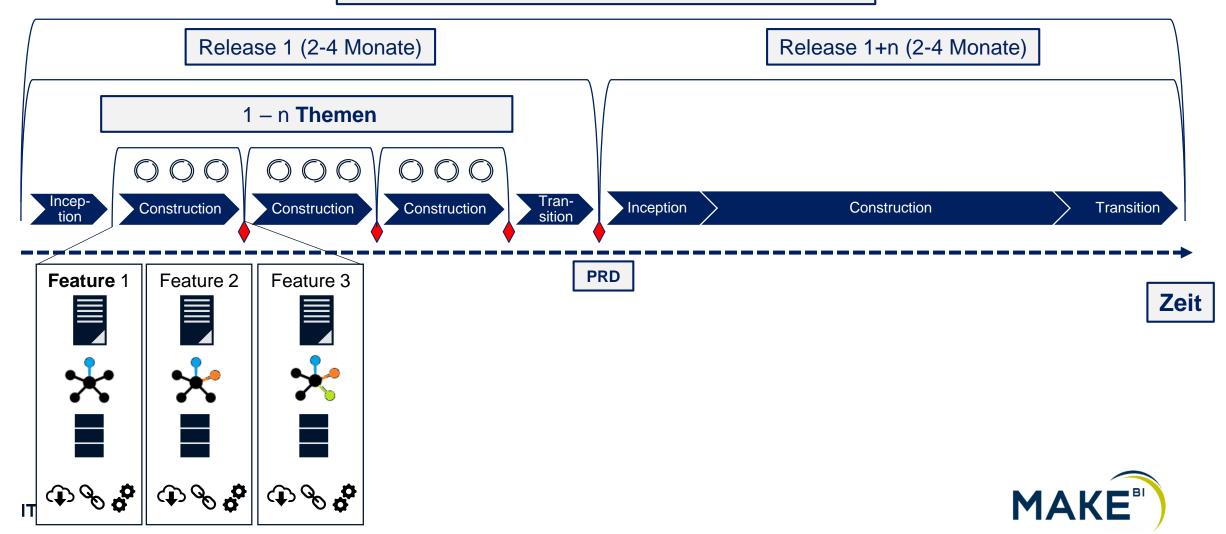

Das IBIREF ist eine Strukturierungshilfe sowie eine Sammlung von Good Practices in Form von Methoden und Hilfsmitteln.


Übersicht möglicher Anforderungsinhalte

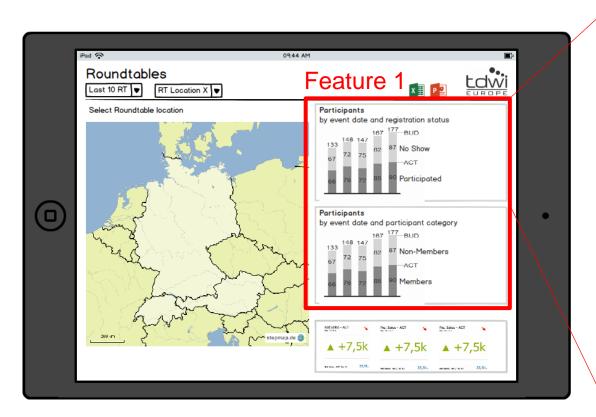
Folgende Themen werden in einem BI-Vorhaben typischerweise adressiert.

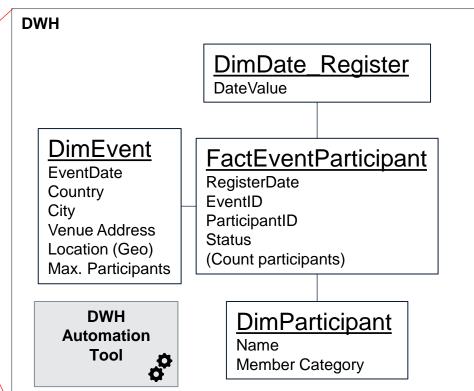
Anforderungen in der Inception-Phase: Themen und Features

Während der Inception-Phase gilt es die Anforderungen für den nächsten Release weiter herunterzubrechen. Dazu dienen Themen und Features.



Anforderungen in der Inception-Phase: Von der Produktvision zum Feature


Der Projektumfang muss weiter heruntergebrochen werden – ohne sich aber um Details kümmern zu müssen.

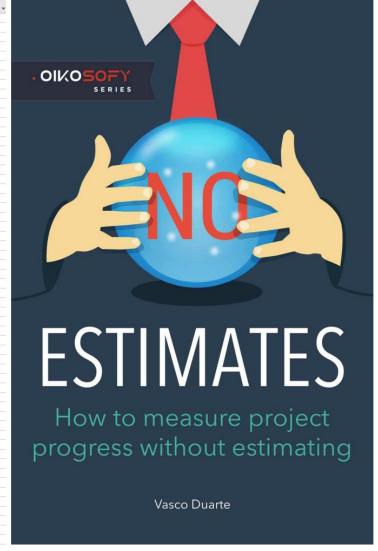

Produktvision = Umfang BI / DWH-Projekt

Anforderungen in der Inception-Phase

- Das erste Feature soll eine Analyse der angemeldeten Teilnehmer pro Roundtable-Event und dem Anmeldestatus (Registered, Participated, NoShow) ermöglichen.
- Für dieses Feature kann man die Eckpunkte des Datenmodells sowie der benötigten Quelldaten bestimmen.

Roundtable Registration System (Web Service or CSV export)

TDWI Membership System (SQL Server)


Grundlagen – NoEstimates und T-Shirt-Grössen

Sinn und Unsinn von Aufwandschätzungen

0	Vorgangsname	0	Vorgangsname		Vorgangsname		i Vorgangsname	→ Duration →	Resour
	0 0	61	Acquire resources (internal/vendor)	121	* organigonamo	181	11: Build agg table load/OLAP cube processing	test 1 dy	v?
		62	Determine test configuration	121	7: Develop high level model diagram 8: Document attributes list	182	12: Design, build and test ETL system automati		
	1: Assess DW/BI reac		Install evaluation prerequisites & compo	123	9: Identify candidate data sources	183	13: Design, build and test Archiving	1 dy'	
	2: Develop preliminary	64	Train the evaluation team	124	9. Identily candidate data sources 10: Profile data	184	14: User acceptance/project review	1 dv'	
	3: Build business justi	65	Develop & tune prototype	124	11: Develop base and derived metrics	185	△ BI APPLICATION DESIGN	1 dy	
	■ PROJECT PLANNING &	66	Conduct tests	126	12: Design detailed dimensional mode	186	1: Create application standards and templates	1 dy'	•
	1: Establish project id	67	Analyze & document results	127	•	187	2: Identify and prioritize candidate applications	1 dy	
	2: Identify project reso		6: Determine product recommendation		13: Review data model with IT	188	3: Document detailed BI application specification		
		69	7: Present findings/results to managemen	128 129	14: Review data model with business	189	4: Design navigation framework	1 dy	
	4: Develop project con	70	8: Enter trial phase		15. Review design recommendations		5: Validate the applications and data model	1 dy	,
		71	9: Negotiate contract	130	16: Review design recommendations		**		,
		72	10: User acceptance/project review	131	17: Finalize logical design documenta		6: Review BI application specs with business us		,
		73	△ MANAGE METADATA	132	18: Define Interfaces to Source Syste	192	7: Revise BI application specs	1 dy	
	0.11	7/	1: Inventory metadata elements, locations	133	19: Draft source to target data map	193	8: Develop BI application test plans	1 dy'	
		75	2: Educate team on metadata situation an	134	20: User acceptance/project review	194	9: User acceptance/project review	1 dy	,
		76		135	■ PHYSICAL DATABASE DESIGN	195	■ BI APPLICATION DEVELOPMENT	1 dy?	
	4. Catablish assessed	76	3: Identify key elements to manage	136	1: Define standards for physical objec		Review application specifications and standar		,
	0. Establish	78	4: Create systems to capture additional m		2: Design physical tables & columns	197	2: Populate BI tool metadata	1 dy	/?
	2: Establish automiss		5: Create tools to synchronize metadata	138	3: Finalize the source to target map	198	3: Create Universe (business metadata)	1 dy*	y?
	4: Establish program t	79	6: Design and implement metadata deliver	139	4: Estimate database size	199	4: Test BI tools	1 dy*	y?
	5: Conduct periodic pr	80	7: Document metadata strategy	140	5: Design development database	200	5: Set up user security	1 dy'	y?
	6: Ongoing program m	81	8: Ongoing metadata management and m	141	6: Design auditing and staging tables	201	6: Set up report process metadata system	1 dy'	v?
	△ BUSINESS REQUIREMENT	82	9: User acceptance/project review	142	7: Develop initial index plan	202	7: Develop BI applications (Reports, BSC usw.)	1 dy	v?
	1: Identify and prepare int	83	△ IMPLEMENT TACTICAL SECURITY MEASI	143	8: Design the OLAP database	203	8: Validate data model and data	1 dy'	
	2: Select interviewees	84	1: Develop tactical security plan	144	9: Develop initial aggregation plan	204	9: Provide data accuracy & cleanliness feedbac	1 dv'	
	3: Schedule interviews	85	2: Secure physical environment	145	10: Develop initial partitioning plan	205	10: Develop BI portal	1 dv'	,
	4: Prepare interview gues	86	3: Secure access into environment	146	11: User acceptance/project review	206	11: Set up report execution scheduling	1 dy'	,
	5: Conduct user kick-off (87	4: Secure access out of environment	147	■ PHYSICAL DATABASE IMPLEMENTAT	207	12: Test BI applications and verify data	1 dy	
	6: Conduct business use	88	5: Implement rigorous password scheme	148	1: Install and setup the RDBMS	208	13: Document Bl applications	1 dy	
	7: Conduct IT data audit i	89	6: Implement controls for software installar	149	2: Build physical storage structure	209			
		90	7: Audit security violations	150	3: Implement table partitioning	210	14: Develop BI application maintenance procedu		
		91	8: Monitor security privileges by individual	151	4: Complete table and index sizing		15: Develop BI application deployment procedur		•
		92	9: User acceptance/project review	152	5: Create tables and indexes	211	16: User review/project acceptance	1 dy'	
	11: Publish requirements	93	■ DEVELOP STRATEGIC SECURITY PLAN	153	6: Create OLAP database	212	■ DEPLOYMENT & OPERATIONS	1 dy	•
		94	1: Design security architecture	154	7: User acceptance/project review	213		1 dy1	
	13: User acceptance/proi	95	2: Implement access services	155	■ ETL SYSTEM DESIGN	214	1: Develop a plan for implementing testing	1 dy*	
		96	3: Implement authentication services	156	1: Design high level ETL process	215	2: Purchase and implement test management to		,
		97	4: Implement external access services	157	2: Test, choose and implement an ET	216	3: Develop test datasets	1 dy	
	1: Create architecture	98	5: Centralize authentication and access c	158	Develop default strategies for extraction	217	4: Define tests	1 dy	/ ?
		99	6: Implement security monitoring and com	159	4: Develop default strategies for extra 4: Develop default strategies for archiv	218	5: User acceptance/project review	1 dy*	y ?
	1: ITX Lifecycle Mar 1	100	7: User acceptance/project review	160	5: Develop default strategies for archiv	219	■ DATA AND PROCESS TESTING	1 dy	/?
	2: ITX Access Mana 1		■ CREATE INFRASTRUCTURE PLAN	161	6: Develop default strategies for dimer	220	1: Test historic load	1 dy*	y?
	3: ITX Deployment F 1		1: Create draft infrastructure model and pla	162	7: Design strategy to meet availability	221	2: Test primary dataset for incremental load	1 dy*	y?
	4: ITX Operations R 1		2: Review/update plan with key IT groups	163	8: Design strategy to meet availability	222	3: Conduct live tests with real data	1 dy'	y?
	3: Review current tech 1		3: Create final version of initial plan	164	9: Design data auditing subsystem 9: Design the structure of the ETL sta	223	4: Test overall process and system integration	1 dy	v?
	4: Develop architecture 1		4: Monitor and update plan			224	5: Test month-end or other unusual conditions	1 dy	v?
	5: Create architecture 1		5: User acceptance/project review	165	10: Develop plan for maintaining dime	225	6: User acceptance/project review	1 dy'	
	6: Determine phased i		1 1 1	166 167	11: Design detailed ETL plans for eac	226	△ PERFORMANCE TUNING	1 dy:	
	7: Define and specify : 1		1: Installation planning		12: Set up initial job sequencing	227	1: Test conformance to Service Level Agreemen		
	8: Create the architect		2: Meet prerequisites	168	10. Document the LTL system special	228	2: Test performance of data loads	1 dy	
	9: Develop configuratio		3: Install hardware / software	169	14: User acceptance/project review	229	3: Improve performance of data loads	1 dy	
	10: User acceptance/r		4: Test hardware / software	170	■ ETL SYSTEM DEVELOPMENT	230		1 dy	
		112	5: User acceptance/project review	171	1. Dulla difficilision table surrogate ite		4: Test query performance		
	1: Develop evaluation r		IMPLEMENTATION	172	2. Dana the dadit system of template	231	5: Improve query performance via new indexes a		
	2: Research candidate		IMPLEMENTATION DIMENSIONAL DATA MODEL DESIGN	173	3: Load the date table and other static		6: End-to-end testing of system after performance	-	
	3: Develop product sho		DIMENSIONAL DATA MODEL DESIGN Review business requirements	174	4: Build historic loads for type 1 dime		7: User acceptance/project review	1 dy'	
	4: Evaluate product op			175	5: Build historic loads for type 2 dime		△ OTHER TESTING	1 dy*	
	■ 5: Optional prototype		2: Review/develop data warehouse bus ma	176	6: Build fact table surrogate key pipel		1: Usability testing of BI applications and portal	1 dy'	
	Select business pro		3: Select business process	177	7: Build historic fact table loads; test		2: Confirm desktop readiness	1 dy'	•
			4: Declare fact table grain	178	8: Build dimension attrib incremental	237	3: User acceptance/project review	1 dy'	v2
	Define completion c	110	5 11 27 E		o. Dana annononon attrib moromontar				•
	Define completion c	119	5: Identify dimensions	179	9: Build dimension table incremental I	238	△ SYSTEM DEPLOYMENT	1 dy'	•
	Define completion c Acquire resources (119	5: Identify dimensions 6: Identify metrics 7: Develop high level model diagram					1 dy:	y?

Konkrete Erfahrungswerte berücksichtigen

«Schätzungen schaffen keinen direkten Mehrwert in Ihrem Prozess, darum wollen wir Wege finden, den Schätzprozess zu reduzieren oder wo möglich ganz darauf zu verzichten.» (Vasco Duarte)

«Der Einbezug konkreter Erfahrungs- und Fortschrittswerte hilft, den benötigten Aufwand zu prognostizieren»

Projekt T-Shirt-Grössen

Architektur T-Shirt-Grössen

POC / Pilot

Projekt T-Shirt-Grössen

Projekt T-Shirt-Grössen basieren auf den Daten aus bisherigen Projekten.

Parameter	XS	S	М	L	XL	XXL	
Preis	< 50k bis > 1M CHF						
Anzahl Themen	1	2-3	2-3	3-4	5-6	6-8	
Dauer Construction pro Thema	4 bis 8 Wochen						
Anzahl Releases	1	1	2	2	3	3	
Teamgrösse IT-Logix (Personen)	1	2	2-3	2-3	2-3	3-4	
Teamgrösse Kunden (Personen)	1	1	1-2	2-3	2-3	2-3	
Dedizierte Grobkonzept-Phase	Nein	Nein	Nein	Ja	Ja	Ja	
Dauer Inception Phase in W.	0.5	1	1	2	2	2	
Dauer Transition Phase in W.	0.5	1	2	3	3	3	
Gesamtdauer in Monaten	1.5	3.0	4.5	8.5	13	17	

17

T-SHIRT-GRÖSSE XL

Architektur-T-Shirt-Grössen

T-SHIRT-GRÖSSE S

Ihre Anforderungen bestimmen den Lösungsansatz und die damit zu erwartenden Aufwände.

T-SHIRT-GRÖSSE L

BI-Frontend-Werkzeug

Data Mart / Semantische Schicht

Data Warehouse

Data Lake / Persistent Stage

Datenquellen

Effort

Varianten zur Gewinnung von Erfahrungswerten

Übersicht Varianten

Wir benötigen Erfahrungswerte – und Sie eine Offerte! Im folgenden schauen wir uns vier Varianten an:

- «Design to Cost»
- «Voranalyse / Inception»
- *POC*
- *Pilot*

21

Design to Cost

Nach einem kurzen Planungsworkshop wird eine Offerte für den ganzen Release erstellt.

- Ungenau
- Unvollständig
- Viel «WAS», wenig «WIE»

Pflichtenheft

Releaseplan & Kostenrahmen für Projekt

- Staffing / Team Size
- Offerte für Construction & Transition / Funding
- ... auf Basis Projekt T-Shirt-Grösse

0.5 Tag Workshop

- Grundlagen **Training**
- **Initial Scope**
- **Initial Architecture**
- **Test Strategy**
- Way of Working
- Aufbau Infrastruktur

Inception-Workshops

5 - 15 Tage Workshop

Construction & Transition

X Iterationen

6 – 9 einwöchige Iterationen

Voranalyse / Inception

Die erste Offerte ist «Design to cost» und umfasst die Inception-Workshops und Releaseplanung. Danach folgt eine zweite Offerte für die Phasen Inception & Transition.

- Ungenau
- Unvollständig
- Viel «WAS», wenig «WIE»

Pflichtenheft

23

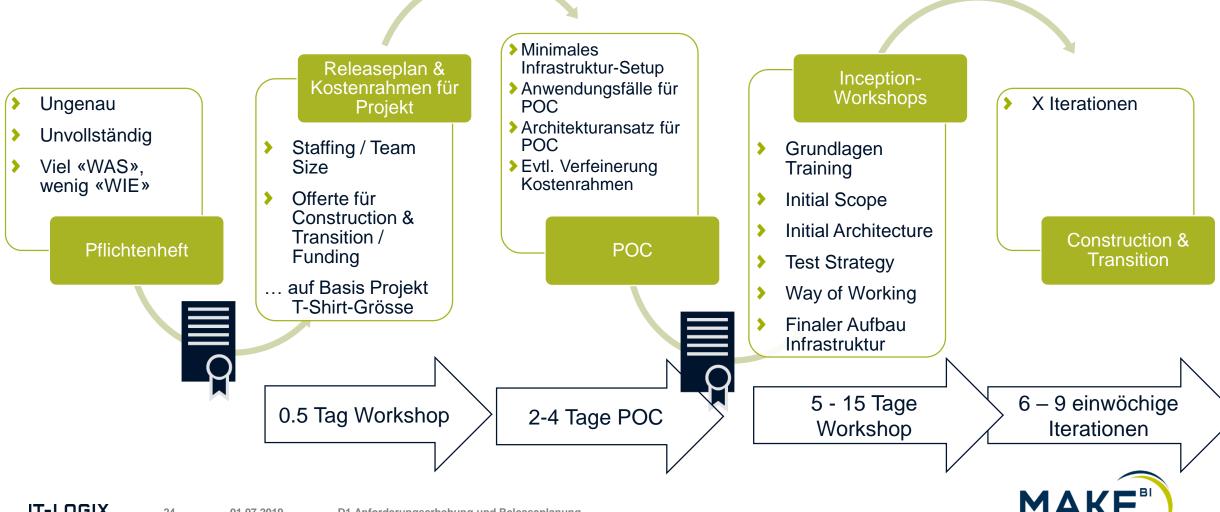
Inception-Workshops

- Grundlagen Training
- Initial Scope
- Initial Architecture
- Test Strategy
- Way of Working

- Staffing / Team Size
- Release Plan
- Offerte für Construction & Transition / Funding

Releaseplan & Kostenrahmen für Construction & Transition Phase Construction & Transition

- Aufbau Infrastruktur
- X Iterationen



Proof of Concept (POC)

Die erste Offerte umfasst einen Vorbereitungsworkshop sowie einen POC. Auf dieser Basis kann besser abgeschätzt werden, welche Anforderungen wie rasch umgesetzt werden können.

Pilot – Start mit einer kleinen T-Shirt-Grösse

Π

- Ungenau
- Unvollständig
- Viel «WAS», wenig «WIE»

Pflichtenheft

25

Releaseplan & Kostenrahmen für Projekt

- Staffing / Team Size
- Offerte für Construction & Transition / Funding
- ... auf Basis Projekt T-Shirt-Grösse

- Grundlagen Training
- Initial Scope
- Initial Architecture
- Test Strategy
- Way of Working
- Aufbau Infrastruktur

Inception-Workshops Construction & Transition

X Iterationen

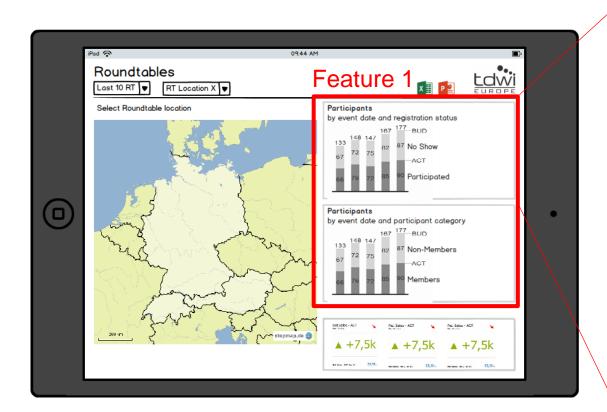
0.5 Tag Workshop

1-2 Tage Workshop

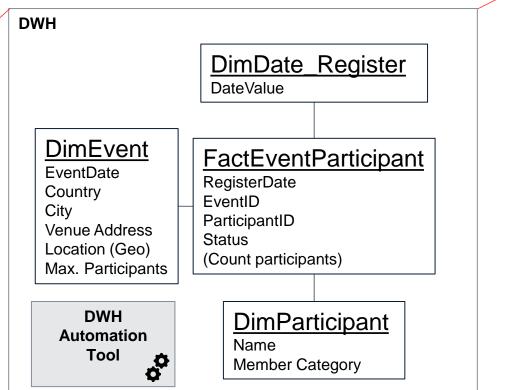
3 – 4 einwöchige Iterationen

Vom Scope Breakdown zur Releaseplanung

Was ist ein Scope Breakdown?


- > Früher oder später müssen wir den Umfang (Scope) eines Releases grob umreissen.
- Diesen Vorgang nennen wir Scope Breakdown.
- Es gibt im Wesentlichen drei Herangehensweisen dafür:
 - Von der BI-Applikation (d.h. Frontend) getrieben
 - Vom Businessprozess getrieben
 - Von den Quelldaten getrieben

27


Von der BI-Applikation getrieben

- Die benötigten Informationsprodukte definieren, welche Daten benötigt werden.
- Der Scope ergibt sich aus der Gesamtheit der benötigten Informationsprodukte.

Ein Informationsprodukt gilt es in einzelne Features zu zerlegen.

Für jedes Feature kann man die Eckpunkte des Datenmodells sowie der benötigten Quelldaten bestimmen.

Roundtable

Registration

(Web Service

or CSV export)

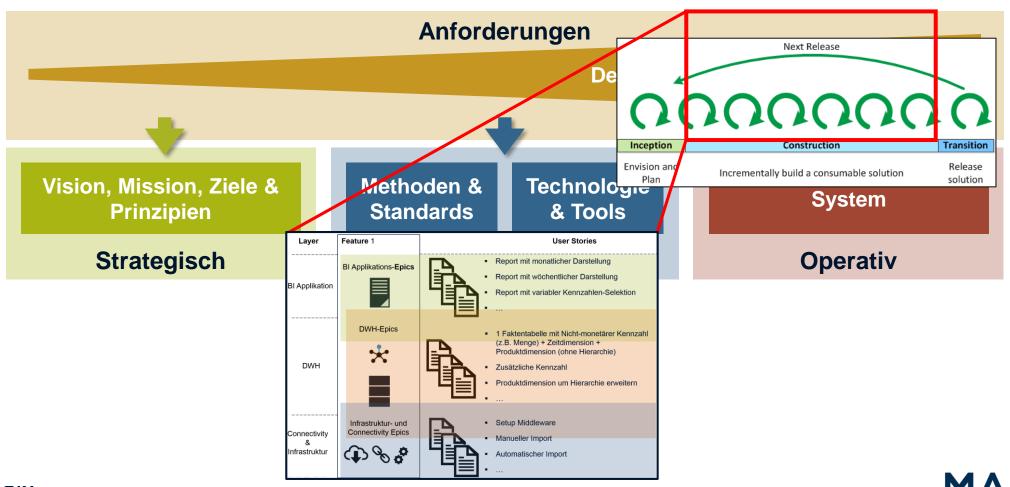
System

BEAM **Canvas**

- Mit 7 «W-Fragen» identifizieren wir die relevanten «Business Events» und zugehörige Details.
- Pro Event lässt sich in der Regel eine Faktentabelle ableiten.
- Die W-Fragen helfen, die benötigten Dimensionen zu identifizieren.

BEAM Canvas TDWI Germany e.V., Roundtable-Prozess

£ When How Who Who does what? How do we organize them? What other related dates/times are know/fixed at th How do they change? Who else is involved? Sich als RT-Datum Subject/Object Customer: Business, Consumer, Segment Teilnehmer Time Zone Employee Supplier Partner anmelden Mitglied How Many •0 Anmelde-How many/much is involved? How long does it take? datum Nicht-Mitglied n-Additive] Anzahl angemeldete Where What 0 Tage zw. Teilnehmer Where does it happen? Where does it refer to? What is involved/used? How are they organized? Anmeldung How do they change? Location Branch, Store, Facility דיי אייי Channel Map/Sequence: First → Previous → Current → Next → Last Distanz zw. Wohnort und **RT-Ort** $^{\circ}$ Why RT Land Round-& Ort Why does it happen? Why do quantities vary? table (RT) Cause, Reason Trigger Event ID Promotion Quantity Descriptions


modelstorming.com - Agile Data Warehouse Design

Business Event Analysis and Modeling D1 Antorderungserhebung und Releaseplanung

Title, Author(s), Date/Version

Anforderungen während dem Projekt verfeinern: (User) Stories

Jetzt schauen wir uns User Stories genauer an.

User & andere Stories

- User Stories helfen als "reminder to have a conversation about it".
- "(User) stories are intended as a lightweight technique that allows you to move fast. **They are not a specification,**but a collaboration tool. Stories should never be handed off to a development team. Instead, they should be
 embedded in a conversation: The product owner and the team should discuss the stories together. This allows you to
 capture only the minimum amount of information, reduce overhead, and accelerate delivery."

 (Source: https://www.romanpichler.com/blog/10-tips-writing-good-user-stories/)
- Allgemeines Muster für User Stories:

Als Rolle oder Persona, Als TDWI-Backoffice MitarbeiterIn will ich die Anzahl Teilnehmer für voll damit «warum">«warum">«warum">».

will ich die Anzahl Teilnehmer für vergangene sowie den nächsten Roundtable Event sehen damit ich die Logistik für den nächsten Event organisieren kann.

> Nicht alles muss zwangsläufig eine "User" Story sein – werfen wir einen Blick auf ein anderes Story-Format:

<Aktion> die|der|das <Resultat> <nach|für|von|in><Objekt>

Extrahieren der Event- und Teilnehmerdaten aus dem Roundtable Registration System In Load-Tabellen in der DWH-Datenbank

Mehr zum Thema:

https://www.mountaingoatsoftware.com/blog/not-everything-needs-to-be-a-user-story-using-fdd-features

Vom Feature zur (User) Story

Layer BI Applikations-**Epics BI** Applikation **DWH**

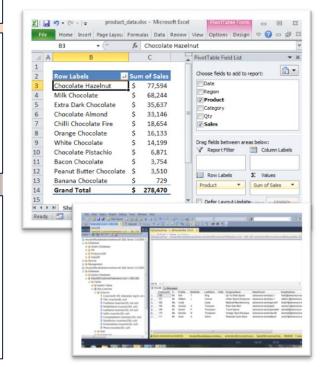
Connectivity Infrastruktur

DWH-Epics

Infrastruktur- und **Connectivity Epics**

User Stories

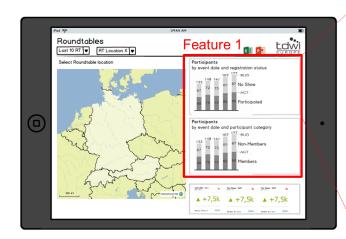


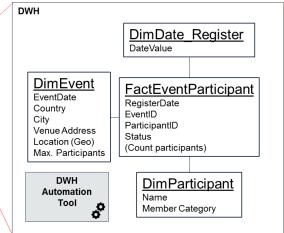


Feature 1:

Als TDWI-Backoffice MitarbeiterIn will ich die Anzahl Teilnehmer für vergangene sowie den nächsten Roundtable Event sehen damit ich die Logistik für den nächsten Event organisieren kann.

- **FDWI-Backoffice MitarbeiterIn**
- will ich ein Diagramm, welches die angemeldeten Teilnehmer pro Roundtable in einer auswählbaren Stadt darstellt.
- damit ich das Catering für den nächsten Event in der gewählten Stadt organisieren kann.
- Modellierung und (Full) Load
- Der Teilnehmerdaten
- In die (relationale) Faktentabelle XY, die Event-Dimension und den zugehörigen Data Mart.
- Manuelles Extrahieren mittels **CSV-Export**
- der Teilnehmerdaten
- In Load-Tabellen in der DWH-**Datenbank**





Das Resultat des Scope Breakdowns

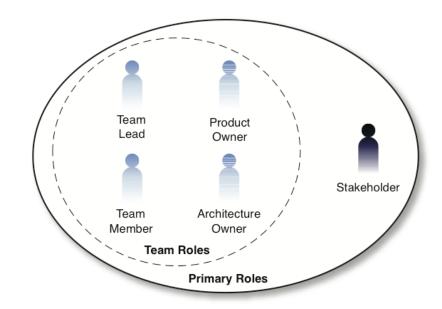
- Liste der benötigen Dimensionen
 - 1 Basis-Epic pro Dimension
 - Zusätzliche Epics für Spezialfälle
- Liste der benötigten Faktentabellen
 - 1 Basis-Epic pro Faktentabelle
 - 1 Epic pro zusätzliche Kennzahlengruppe
 - Zusätzliche Epics für Time Intelligence
 - Zusätzliche Epics für Spezialfälle
- Liste der benötigten Informationsprodukte bzw. deren Teilbereiche
 - 1 Epic pro Bildschirmseite bzw. Feature
 - Zusätzliche Epics für Spezialfälle

Scope Kategorie	DimEvent		
Dimensionen			
	DimParticipant		
Fakten	FactEventParticipant		
	Time Intelligence		
Informationsprodukte	Charts Participants		
	Map + KPI Boxen		

Vom Scope Breakdown zum Releaseplan

Scope Kategorie	Epics	Aufwand in Tagen	
Dimensionen	DimEvent	2	
	DimParticipant	2	
Fakten	FactEventParticipant	2	
	Time Intelligence	2	
Informationsprodukte	Charts Participants	1	
	Map + KPI Boxen	1	
Aufwände Thema 1		10	
Aufwände Thema 2		14	
Aufwände Construction Phase		24	

Beinhaltet:


- Detailspezifikation
- Umsetzung
- > Testing & Review
- Rework
- Dokumentation

Der Wert basiert auf einem allgemeinen Erfahrungswert. Er muss situativ angepasst werden und im Rahmen des POC (in der Inception-Phase) validiert werden.

Vom Scope Breakdown zum Releaseplan

- Ausgehend von der Construction-Phase und dem gewünschten GoLive-Termin bestimmen wir, wie gross das benötigte Team sein soll.
 - Inception- und Transition sind in der Regel Workshop basiert und dadurch hinsichtlich der Durchlaufzeit fixiert.
 - In unserem Beispiel bleiben sechs Wochen für die Construction Phase, d.h. 24 Tage / 6 = 4 Tage pro Woche.
 - Das Beispielteam besteht aus einem Entwickler (3 Tage / Woche) und einem Solution Architect / Agile Coach (1 Tag / Woche) seitens IT-Logix und dem Product Owner und Architecture Owner seitens Kunde.

Vom Scope Breakdown zum Releaseplan (Alle Angaben zu Aufwänden sind exemplarisch)

Inception Themen	Aufwand in Tagen
Develop Common Vision / Kickoff*	0.5
Explore Scope (Feature Level)*	2
Identify Initial Architecture	1
Develop Test Strategy	0.5
Address Risk, Define Way of Working	0.5
Installation und Vorbereiten Entwicklungsumgebung	1
Releaseplanung und Erarbeiten der ersten User Stories*	2
POC*	2
Stakeholder Vision (Meilenstein-Meeting) vorbereiten und durchführen	1
Workshoptage Inception	11
* 2 Personen von IT-Logix	6
Personentage Inception	17

Transition Themen	Aufwand in Tagen
Deployment into production / coordinate with IT operations	2
Test recurring load processes in production	1
Finalize documentation	1
Final rework	2
Organize GoLive communication, Various Tasks	1
Aufwände Transition	7

Vom Scope Breakdown zum Releaseplan

Phase	Aufwand in Tagen
Inception	17
Construction	24
Transition	7
Aufwand Release 1	48

- Der erste Release zeichnet sich typischerweise durch eine verhältnismässig lange Inception Phase aus.
- Das Ziel ist, die Inception Phase mit jedem zusätzlichen Release zu verkürzen.

Zusammenfassung

- ➤ Anforderungserhebung und -strukturierung ist neben Erfahrung v.a. auch Handwerk, das sich erlernen lässt.
- Unsere Sammlung von Methoden und Frameworks unterstützen Sie dabei.
- Um eine zuverlässige Releaseplanung zu ermöglichen, benötigen wir Erfahrungswerte oder einen Design-to-Cost-Ansatz.
- Erfahrung gewinnen wir v.a. durch praktische Arbeiten in einem POC oder einer Pilotumsetzung.
- > Features, Epics und Stories helfen, die angedachten Anforderungen grob zu umschreiben.
- Das Ziel ist es, die Anforderungen in kleine Einheiten zu schneiden. Zusammen mit den Erfahrungswerten (z.B. aus einem POC) können wir den benötigten Aufwand prognostizieren.
- Aus allfälligen Vorgaben zum GoLive-Termin lässt sich die benötigte Teamgrösse ableiten. Diese wiederum bestimmt die prognostizierten Aufwände für die Inception- und Transitionphasen.

Wir freuen uns auf angeregte Gespräche mit Ihnen ...

Raphael Branger, Senior BI Solution Architect, Partner <u>rbranger@it-logix.ch</u>

YouTube

Blog

